
CS273P Homework #1
Machine Learning & Data Mining: Spring 2018

Due: Thursday April 19th, 2018

Most homeworks will involve data analysis and reporting on methods and results using Python
code. For submitting your results/answers, I recommend that you use iPython Notebook, or if you
prefer, Word, OpenO�ce, or LaTeX to create a document with your answers and any code snippets
that will tell us what you did and how you did it, then export the �nished report as a PDF �le.
It is important that you include enough detail that we know how you solved the problem, since
otherwise we will be unable to grade it.

Ideally your submission should be a single electronic document. For some homeworks you may
�nd it more convenient to do parts by hand, in which case you should submit a hard copy of the
entire homework (make sure your handwriting is clearly readable). Please do not upload a ZIP
�le containing multiple �gures, as this is di�cult to interpret without associated comments. If (for
some rare reason) you need to submit large amounts of code, you can upload it in a separate ZIP
�le, but please ensure that there is enough information in your report to understand what you did
without examining the code itself.

It is often useful to create a script that solves the homework (for example, in iPython notebook
or as a python �le); if so, you may �nd it useful to set the random number seed at the beginning,
e.g., numpy.random.seed(0), to ensure consistent behavior each time.

Problem 0: Getting Connected (5 pts)

Please join our class forum on Piazza, http://www.piazza.com/uci/spring2018/cs273p
Unless your question is highly speci�c and of no interest to other students, please post your questions
and discussion points on Piazza, rather than by email to me or the TA/Reader, since chances are
that other students have the same or similar questions, and will be helped by seeing the discussion.
Note that questions can be posted as private, if you prefer.

Problem 1: Python & Data Exploration (20 pts)

In this problem, we will explore some basic statistics and visualizations of an example data set. First,
download the zip �le for Homework 1, which contains some course code (the mltools directory)
and the �Fisher iris� data set, and load the latter into Python:

import numpy as np
import matplotlib.pyplot as plt

iris = np.genfromtxt("data/iris.txt",delimiter=None) # load the text file
Y = iris[:,-1] # target value is the last column
X = iris[:,0:-1] # features are the other columns

The Iris data consist of four real-valued features used to predict which of three types of iris �ower
was measured (a three-class classi�cation problem).

(a) Use X.shape[1] to get the number of features, and X.shape[0] to get the number of data
points.
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(b) For each feature, plot a histogram (�plt.hist�) of the data values

(c) Compute the mean & standard deviation of the data points for each feature (np.mean, np.std)

(d) For each pair of features (1,2), (1,3), and (1,4), plot a scatterplot (see `plt.plot� or �plt.scatter�)
of the feature values, colored according to their target value (class). (For example, plot all
data points with y = 0 as blue, y = 1 as green, etc.)

Problem 2: kNN predictions (30 pts)

In this problem, you will continue to use the Iris data and explore a KNN classi�er using provided
knnClassify python class. While doing the problem, please explore the implementation to become
familiar with how it works.

First, we will shu�e and split the data into training and validation subsets:

iris = np.genfromtxt("data/iris.txt",delimiter=None) # load the data
Y = iris[:,-1]
X = iris[:,0:-1]

# Note: indexing with ":" indicates all values (in this case, all rows);
# indexing with a value ("0", "1", "-1", etc.) extracts only that one value (here, columns);
# indexing rows/columns with a range ("1:-1") extracts any row/column in that range.

import mltools as ml
# We'll use some data manipulation routines in the provided class code
# Make sure the "mltools" directory is in a directory on your Python path, e.g.,
# export PYTHONPATH=${PYTHONPATH}:/path/to/parent/dir
# or add it to your path inside Python:
# import sys
# sys.path.append('/path/to/parent/dir/');

X,Y = ml.shuffleData(X,Y); # shuffle data randomly
# (This is a good idea in case your data are ordered in some pathological way,
# as the Iris data are)

Xtr,Xva,Ytr,Yva = ml.splitData(X,Y, 0.75); # split data into 75/25 train/validation

Learner Objects Our learners (the parameterized functions that do the prediction) will be de-
�ned as python objects, derived from either an abstract classi�er or abstract regressor class. The
abstract base classes have a few useful functions, such as computing error rates or other measures
of quality. More importantly, the learners will all follow a generic behavioral pattern, allowing us
to train the function on a data set (i.e., set the parameters of the model to perform well on those
data), and make predictions on a data set.

So, you can build and �train� a kNN classi�er on Xtr,Ytr and make predictions on some data
Xva with it using e.g.,

knn = ml.knn.knnClassify() # create the object and train it
knn.train(Xtr, Ytr, K) # where K is an integer, e.g. 1 for nearest neighbor prediction
YvaHat = knn.predict(Xva) # get estimates of y for each data point in Xva

# Alternatively, the constructor provides a shortcut to "train":
knn = ml.knn.knnClassify( Xtr, Ytr, K );
YvaHat = predict( knn, Xva );
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If your data are 2D, you can visualize a data set and a classi�er's decision regions using e.g.,

ml.plotClassify2D( knn, Xtr, Ytr ); # make 2D classification plot with data (Xtr,Ytr)

This function plots the training data, then calls knn's predict function on a densely spaced grid
of points in the 2D space, and uses this to produce the background color. Calling the function with
knn=None will plot only the data.

(a) Modify the code listed above to use only the �rst two features of X (e.g., let X be only the
�rst two columns of iris, instead of the �rst four), and visualize (plot) the classi�cation
boundary for varying values of K = [1, 5, 10, 50] using plotClassify2D.

(b) Again using only the �rst two features, compute the error rate (number of misclassi�cations)
on both the training and validation data as a function of K = [1, 2, 5, 10, 50, 100, 200]. You
can do this most easily with a for-loop:

K=[1,2,5,10,50,100,200];
for i,k in enumerate(K):
learner = ml.knn.knnClassify(... # TODO: complete code to train model
Yhat = learner.predict(... # TODO: complete code to predict results on training data
errTrain[i] = ... # TODO: " " to count what fraction of predictions are wrong
#TODO: repeat prediction / error evaluation for validation data

plt.semilogx(... #TODO: " " to average and plot results on semi-log scale

Plot the resulting error rate functions using a semi-log plot (�semilogx�), with training error in
red and validation error in green. Based on these plots, what value of K would you recommend?

Problem 3: Naïve Bayes Classi�ers (45 pts)

In order to reduce my email load, I decide to implement a machine learning algorithm to decide
whether or not I should read an email, or simply �le it away instead. To train my model, I obtain
the following data set of binary-valued features about each email, including whether I know the
author or not, whether the email is long or short, and whether it has any of several key words,
along with my �nal decision about whether to read it (y = +1 for �read�, y = −1 for �discard�).

x1 x2 x3 x4 x5 y
know author? is long? has `research' has `grade' has `lottery' ⇒ read?

0 0 1 1 0 -1
1 1 0 1 0 -1
0 1 1 1 1 -1
1 1 1 1 0 -1
0 1 0 0 0 -1
1 0 1 1 1 1
0 0 1 0 0 1
1 0 0 0 0 1
1 0 1 1 0 1
1 1 1 1 1 -1

In the case of any ties, we will prefer to predict class +1.
I decide to try a naïve Bayes classi�er to make my decisions and compute my uncertainty.

(a) Compute all the probabilities necessary for a naïve Bayes classi�er, i.e., the class probability
p(y) and all the individual feature probabilities p(xi|y), for each class y and feature xi
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(b) Which class would be predicted for x = (0 0 0 0 0)? What about for x = (1 1 0 1 0)?

(c) Compute the posterior probability that y = +1 given the observation x = (1 1 0 1 0).

(d) Why should we probably not use a �joint� Bayes classi�er (using the joint probability of the
features x, as opposed to a naïve Bayes classi�er) for these data?

(e) Suppose that, before we make our predictions, we lose access to my address book, so that we
cannot tell whether the email author is known. Should we re-train the model, and if so, how?
(e.g.: how does the model, and its parameters, change in this new situation?) Hint: what will
the naïve Bayes model over only features x2 . . . x5 look like, and what will its parameters be?
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